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Plan of the talk.

Introduction to the physics of gases.

The Kac model and gas kinetic.

Classical results on the Kac model.

Local Perturbation.
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A little theatre ...

1000 particles initially confined in a quarter of the container and with independent
velocity uniformly distributed in [−1, 1].

Left panel: particle position. Right panel: histogram of the x-velocity (time smoothed).
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... and more theatre.

Exactly as before but the particles do not collide.

Left panel: particle position. Right panel: histogram of the x-velocity (time smoothed).
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A little history: Fourier.

Heat, like gravity, penetrates every substance of the universe, its ray occupy
all parts of space. The object of our work is to set forth the mathematical laws
which this element obeys. The theory of heat will hereafter form one of the
most important branches of general physics.

— Théorie analytique de la chaleur, 1822
— Jean Baptiste Joseph Fourier

But whatever may be the range of mechanical theories, they do not apply to the
effects of heat. These make up a special order of phenomena, which cannot
be explained by the principles of motion and equilibria.

— Ibidem
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To get an idea ...

Here are some physical quantities for oxygen at ambient condition

temperature T = 273K

pressure P = 1013mbar

number density δ = N/V = 2.7× 1025molecules/m3

kinetic radius r = 1.73× 10−10m

molecule average speed v = 1.58× 102m/s

mean free path d = 1.0× 10−7m

mean free time λ = 0.6× 10−5s
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Macroscopic vs microscopic

Consider our cubic meter of oxygen. How can we describe it when it is not in
equilibrium? E.g. when it is stirred around by a paddle or heated from one of his walls.

In such a case, we normally use macroscopic equations like the Heat Equation,
Navier-Stokes Equation, etc. They describe the evolution of quantities like the local
temperature T (x), density δ(x), velocity u(x), entropy s(x), and more.

We can consider our cube has made up of a large number of small cubes, say 1012

cubes of side 1µ = 10−4m. Each of such cubes will contain in average 1013 particles.
Thus from the macroscopic point of view each of these cubes is a point and its position
is the x appearing in the macroscopic equations. From the microscopic point of view it
is an infinite system endowed of temperature, entropy. etc.

This image is called local equilibrium and is sometime expressed saying that a
macroscopic system can be thought as composed by infinitely many volume elements
that are macroscopically infinitesimal and microscopically infinite.
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Local equilibrium with 25 volume elements.
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Some more history: de Groot and Mazur.

It will now be assumed that, although the total system is not in equilibrium,
there exists within small mass elements a state of “local” equilibrium for which
the local entropy s is the same function of u, v and ck as in real equilibrium.

— Non-Equilibrium Thermodynamics, 1962
— Sybren Ruurds de Groot and Peter Mazur

The hypothesis of “local” equilibrium can, from a macroscopic point of view,
only be justified by virtue of the validity of the conclusions derived from it.

— Ibidem
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Work in collaboration with:

Michael Loss: School of Math., GaTech

Ranjini Vaidyanathan: Former graduate student, School of Math., GaTech

Hagop Tossounian: Former graduate student, School of Math., GaTech. Now in
Santiago, Chile.

Alissa Geisinger: Graduate student, Universität Tübingen

Tobias Ried: Graduate student, Karlsruhe Institute of Technology

Publications:

F. B., M. Loss, R. Vaidyanathan,The Kac Model Coupled to a Thermostat, JSP
156:847-667 (2014).

H. Tossounian, R. Vaidyanathan:Partially Thermostated Kac Model, JMP 56
(2015).

F. B., M. Loss, H. Tossounian, R. Vaidyanathan, Uniform Approximation of a
Maxwellian Thermostat by Finite Reservoirs, CMP 351 (2017).

H. Tossounian, Equilibration in the Kac Model using the GTW Metric d2, JSP 169
(2017).

F. B., A. Geisiger, M. Loss, T. Ried, Entropy Decay for the Kac Evolution, CMP 353
(2019)
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Gas Kinetic.

A very simplified model of a gas at temperature T = β−1 has the following ingredients:

1 a very large number M of particles in a container of volume V ;

2 particles are hard spheres of small radius r ;

3 collisions are elastic;
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Mean free time.

The number of collision ν a particle suffers in a time t is:

ν = πd2 v̄ t M/V

Since

v̄ '
√

3kBT
m

it is reasonable define the Grad-Boltzman limit as

r → 0 , M →∞ such that πr 2

√
3kBT

m
M/V → λ−1

where λ is the mean free time.

λ is the natural time scale for the system. Fix unit of time such that λ = 1.
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The Kac model (1956).

We have M particles in 1, 2 or 3 dimensions that are initially uniformly distributed in
space.

In every time interval dt there is a probability λMdt that a collision take place.

When a collision take place two particles are randomly and uniformly selected,
independently of their position.

The incoming velocities of the two particles are randomly updated in such a way to
preserve energy and, in dimension 2 or 3, momentum.

λM is fixed in such a way that the average time between two collision of a given particle
is independent of M. That is λM = 1/(M − 1).
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Kac vs real gas dynamics

The main simplifications we have introduced are:

1 Collisions times are stochastic and independent from the position and velocity of
the particles.

2 Energy and momentum are redistributed randomly.

3 the collision rate between two particles does not depend on their velocities. This
are often called “Maxwellian Molecules”.
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The evolution.

State of the system

F (V ) : RM → R V = (v1, v2, . . . , vM ) ∈ RM ,

probability of finding the system with velocities V .

If F is the state of the system before particle i and j collide, just after the collision the
state is

Ri,jF (V ) =

∫
ρ(θ)F (ri,j (θ)V )dθ

where
r1,2(θ)V = (v1 cos(θ)− v2 sin(θ), v1 sin(θ) + v2 cos(θ), v3, . . .)

that is, ri,j (θ) is a rotation of angle θ in the i , j plane.

We need ∫
ρ(θ) sin θ cos θdθ = 0 .

but for most of the talk we will assume

ρ(θ) =
1

2π
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The evolution.

The effect of a collision of a randomly picked pair of particles is

QF =
1(M
2

) ∑
i<j

Ri,jF

while the probability of having k collision in a time t is

tk

k !
e−Mt

so that the evolution is given by

Ft = e−Mt
∞∑

k=0

tk

k !
Qk F0 = eLS tF0

where
LS = M(Q − I) =

2
M − 1

∑
i<j

(Ri,j − I).
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Master Equation.

Thus Ft satisfies the equation:

Ḟt = LSFt = M(QF − F )

where QF is usually called the gain term and F is the loss term.

The evolution generated by this equation preserves the total kinetic energy. Thus every
rotationally invariant distribution is a steady state.

Given an initial distribution F (V ), the evolution brings it toward its projection on the
rotationally invariant distributions, that is toward

FR(V ) =

∫
SM−1

F (|V |ω)dσ(ω)

where dσ(ω) the normalized volume measure on the unit sphere SM−1.
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Convergence to equilibrium.

Carlen-Carvalho-Loss (2000) showed that∥∥∥etLS F (V )− FR(V )
∥∥∥

2
≤ Ce−L(1) t

where ‖ · ‖2 is the L2(RM ) norm and

L(1) =
1
2

M + 1
M − 2

.

The L2 norm has one major problem. Assume that

F (V ) =
M∏

i=1

f (vi ) and G(V ) =
M∏

i=1

g(vi )

then
‖F −G‖2 ' CM‖h − g‖ with C > 1.
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Convergence to equilibrium in entropy.

The entropy with respect to the steady state is defined as

S(F |FR) =

∫
F (V ) log

(
F (V )

FR(V )

)
dV

In general
S(F |FR) ≥ 0 S(F |FR) = 0 ⇔ F = FR

and
Ṡ(Ft |FR) ≤ 0

and

F (V ) =
M∏

i=1

f (vi ) ⇒ S(F |FR) = O(M).
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Cercignani Conjecture

For the realistic kinetic evolution Cercignani conjectured

S(Ft |FR) ≤ e−c tS(F0|FR).

For the Kac model

− sup
F

Ṡ(F |FR)

S(F |FR)
≥ 1

M

but for every δ there exists Cδ and Fδ such that

− Ṡ(Fδ|FR)

S(Fδ|FR)
≤ Cδ

M1−δ .

Villani (2003), Einav (2011)
Mischler and Muhot obtained polynomial decay unifrom in N.
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but for every δ there exists Cδ and Fδ such that

− Ṡ(Fδ|FR)

S(Fδ|FR)
≤ Cδ

M1−δ .

Villani (2003), Einav (2011)
Mischler and Muhot obtained polynomial decay unifrom in N.
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The GTW metric.

Given two probability distributions F (V ) and G(V ) on RM , symmetric in the V variables
and with 0 average, that is∫

RM
F (V )dV = 1

∫
RM

viF (V )dV = 0

and analogously for G, we can define the GTW distance as follows. Let

F̂ (Θ) =

∫
RM

ei(V ·Θ)F (V )dV .

that is F̂ (Θ) is the Fourier transform of F (V ). Then we define

d2(F ,G) = sup
Θ 6=0

|F̂ (Θ)− Ĝ(Θ)|
‖Θ‖2

It is easy to see that this is a metric.
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Convergence in the GTW metric.

It is quite easy to see that LS is not expanding with respect to d2 that is

d2(eLS tF , eLS tG) ≤ d2(F ,G)

With more effort one can prove that (Tossounian, 2016):

d2(eLS tF ,FR) ≤ Ke−
c
M td2(F ,FR)

for some suitable constants c,K .

On the other hand he can prove that there exists F such that

d2(eLS tF ,FR) ≥
(

1− CtM−1
)

d2(F ,FR).

Moreover if

F (V ) =
M∏

i=1

f (vi ) and G(V ) =
M∏

i=1

g(vi )

then
d2(F ,G) = d2(f , g).

that is, the GTW metric is extensive.
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Local Perturbation

We want to study the situation in which only a small number M of particles is out of
equilibrium, that is a “local perturbation”.

We write M as N + M with M << N, the state of the system as

Ft (V ,W ) V ∈ RM W ∈ RN

and the generator as

L = Q − I Q =
1(N+M
2

) ∑
1≤i<j≤N+M

Ri,j

that is we can write

Q =
2

N + M − 1

∑
1≤i<j≤M

Ri,j +
2

N + M − 1

∑
M+1≤i<j≤N

Ri,j +
2

N + M − 1

M∑
i=1

N+M∑
j=M+1

Ri,j .
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Evolution

Finally we choose the initial conditions as

F0(V ,W ) = f0(V )e−π|W |
2
.

so that
Ft (V ,W ) = eLtF0(V ,W ).

Thus we look at the evolution of an initial state where M particles are out of equilibrium
while the remaining N are in a canonical equilibrium at temperature T = 1

2π .
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Entropy

Since we are mostly interested in the evolution of the M particles in the local “volume
element” we can look at the marginal of Ft

ft (V ) =

∫
RN

Ft (V ,W )dW .

We can define the entropy as

S(ft |f∞) =

∫
ft (V ) log

(
ft (V )

f∞(V )

)
dV

where
f∞(V ) = lim

t→∞
ft (V )

and again try to prove that
S(ft |f∞) ≤ e−ctS(f0|f∞).

This looks more promising but there are still problems.
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Entropy relative to the Canonical State

It is not hard to see that

S
(

f∞
∣∣∣e−π|V |2) = O

(
1

N + M

)
thus we decide to look at

S(ft ) = S
(

ft
∣∣∣e−π|V |2) .

that is we look at the entropy relative to the distribution in the Canonical Ensemble.
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Main result

Theorem

Assume that the initial state of the system is of the form

F0(V ,W ) = f0(V )e−π|W |
2
.

with

S(f0) =

∫
RM

f0(V ) log

(
f0(V )

e−π|V |2

)
dV <∞

and define
ft (V ) =

∫
RN

Ft (V ,W ) dW =

∫
RN

(
eLtF0

)
(V ,W ) dW

then if N > M we have

S(ft ) ≤
(

1
N + M

+
N

N + M
e−

1
2

N+M
N+M−1 t

)
S(f0)
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Remarks

The result is more general. We can write the generator as

Q =
λM

M − 1

∑
1≤i<j≤M

Ri,j +
λN

N − 1

∑
M+1≤i<j≤N

Ri,j +
µ

N

M∑
i=1

N+M∑
j=M+1

Ri,j

and get

S(ft ) ≤
[

M
N + M

+
N

N + M
e−t µ2 (N+M)/N

]
S(f0)

independently from λM and λN .

The previous case correspond to

λM =
2(M − 1)

N + M − 1
, λN =

2(N − 1)

N + M − 1
and µ =

2N
N + M − 1

.
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Thermostatted Kac System

Taking λM and λN independent from N and M we can interpret the above system as a
large reservoir with N particles in contact with a small system with M particles.

In this case we can prove that, as N →∞, the combined evolution of system+reservoir
converge uniformly in time to the evolution of a small Kac system with M particles
interacting with a Maxwellian thermostat.

We can prove this convergence both in a suitable L2 norm and in the GTW d2 metric
but we cannot get it in relative entropy.
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The expansion

We start expanding the exponential as

Ft (V ,W ) = e−(M+N)t
∞∑

k=0

(M + N)k tk

k !
Qk F0(V ,W )

we can further expand

Qk F0(V ,W ) = λk
∑

α1,...,αk

∫
dθ1

2π
· · · dθk

2π
F0([Πk

j=1rαj (θj )]−1(V ,W ))

where
λ =

2
(M + N)(M + N − 1)

and α = (i, j) indicates a pair of particles.

Thus we write the evolution as an average over all possible “collision histories”.
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Write
f (V ) = h(V )e−π|V |

2

so that
F0(V ,W ) = (h ◦ P)(V ,W )e−π(|V |2+|W |2)

where
P : RM+N → RM ,P(V ,W ) = V .

We get

Qk F0(V ,W ) = e−π|V |
2
λk

∑
α1,...,αk

∫
dθ1

2π
· · · dθk

2π
(h ◦ P)([Πk

l=1rαl (θl )]−1(V ,W ))e−π|W |
2
.

F. Bonetto bonetto@math.gatech.edu The Kac model and (Non-)Equilibrium Statistical Mechanics. 31 / 1



Write
f (V ) = h(V )e−π|V |

2

so that
F0(V ,W ) = (h ◦ P)(V ,W )e−π(|V |2+|W |2)

where
P : RM+N → RM ,P(V ,W ) = V .

We get

Qk F0(V ,W ) = e−π|V |
2
λk

∑
α1,...,αk

∫
dθ1

2π
· · · dθk

2π
(h ◦ P)([Πk

l=1rαl (θl )]−1(V ,W ))e−π|W |
2
.

F. Bonetto bonetto@math.gatech.edu The Kac model and (Non-)Equilibrium Statistical Mechanics. 31 / 1



Write
f (V ) = h(V )e−π|V |

2

so that
F0(V ,W ) = (h ◦ P)(V ,W )e−π(|V |2+|W |2)

where
P : RM+N → RM ,P(V ,W ) = V .

We get

Qk F0(V ,W ) = e−π|V |
2
λk

∑
α1,...,αk

∫
dθ1

2π
· · · dθk

2π
(h ◦ P)([Πk

l=1rαl (θl )]−1(V ,W ))e−π|W |
2
.

F. Bonetto bonetto@math.gatech.edu The Kac model and (Non-)Equilibrium Statistical Mechanics. 31 / 1



Integrating over W∫
RN

Qk F0(V ,W )dW = e−π|V |
2
λk

∑
α1,...,αk

∫
dθ1

2π
· · · dθk

2π
Nk,α,θh(W )

where α = (α1, . . . , αk ), θ = (θ1, . . . , θk ) and

Nk,α,θh(V ) =

∫
RN

(h ◦ P)([Πk
j=1rαj (θj )]−1(V ,W ))e−π|W |

2
dW

Putting all together and using convexity of the entropy we get

S(ft ) ≤e−(M+N)t
∞∑

k=0

(M + N)k tk

k !
λk

∑
α1,...,αk

∫
dθ1

2π
· · · dθk

2π
×

∫
RM
Nk,α,θh(V ) log [Nk,α,θh(V )] e−π|V |

2
dV
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Call

S(h) =

∫
RM

h(V ) log h(V )e−π|V |
2

dV

then we need

S(Qk h) = λk
∑

α1,...,αk

∫
dθ1

2π
· · · dθk

2π
S(Nk,α,θh) ≤ Ck,MS(h)

where

Nk,α,θh(V ) =

∫
RN

(h ◦ P)([Πk
j=1rαj (θj )]−1(V ,W ))e−π|W |

2
dW

and

Ck,M =

[
M

N + M
+

N
N + M

(
1− 1

2
N + M

N + M − 1

)k
]
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Resumming

Indeed we find

S(ft ) ≤e−(M+N)t
∞∑

k=0

(M + N)k tk

k !
λk

∑
α1,...,αk

∫
dθ1

2π
· · · dθk

2π
×

∫
RM
Nk,α,θh(V ) log [Nk,α,θh(V )] e−π|V |

2
dV

≤e−(M+N)t
∞∑

k=0

(M + N)k tk

k !

[
M

N + M
+

N
N + M

(
1− 1

2
N + M

N + M − 1

)k
]

S(f0)

=

[
M

N + M
+

N
N + M

e−
t
2

N+M
N+M−1

]
S(f0)
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Write

Ok (α, θ) =

 k∏
j=1

rαj (θj )

−1

=

[
Ak (α, θ) Bk (α, θ)
Ck (α, θ) Dk (α, θ)

]

Ak (α, θ)Ak (α, θ)T + Bk (α, θ)Bk (α, θ)T = IM

so that

(h ◦ P)([Πk
j=1rαj (θj )]−1(V ,W )) = h(Ak (α, θ)V + Bk (α, θ)W )
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Nk,α,θh(V ) =

∫
RN

h(Ak (α, θ)V + Bk (α, θ)W )e−π|W |
2
dW

=

∫
RM

h
(

Ak (α, θ)V +
(

IM − Ak (α, θ)Ak (α, θ)T
)1/2

W
)

e−π|W |
2
dW

Ornstein-Uhlenbeck operator with matrix valued times

F. Bonetto bonetto@math.gatech.edu The Kac model and (Non-)Equilibrium Statistical Mechanics. 35 / 1



Write

Ok (α, θ) =

 k∏
j=1

rαj (θj )

−1

=

[
Ak (α, θ) Bk (α, θ)
Ck (α, θ) Dk (α, θ)

]

Ak (α, θ)Ak (α, θ)T + Bk (α, θ)Bk (α, θ)T = IM

so that

(h ◦ P)([Πk
j=1rαj (θj )]−1(V ,W )) = h(Ak (α, θ)V + Bk (α, θ)W )

Partially integrating W

Nk,α,θh(V ) =

∫
RN

h(Ak (α, θ)V + Bk (α, θ)W )e−π|W |
2
dW

=

∫
RM

h
(

Ak (α, θ)V +
(

IM − Ak (α, θ)Ak (α, θ)T
)1/2

W
)

e−π|W |
2
dW

Ornstein-Uhlenbeck operator with matrix valued times

F. Bonetto bonetto@math.gatech.edu The Kac model and (Non-)Equilibrium Statistical Mechanics. 35 / 1



Write

Ok (α, θ) =

 k∏
j=1

rαj (θj )

−1

=

[
Ak (α, θ) Bk (α, θ)
Ck (α, θ) Dk (α, θ)

]

Ak (α, θ)Ak (α, θ)T + Bk (α, θ)Bk (α, θ)T = IM

so that

(h ◦ P)([Πk
j=1rαj (θj )]−1(V ,W )) = h(Ak (α, θ)V + Bk (α, θ)W )

Partially integrating W

Nk,α,θh(V ) =

∫
RN

h(Ak (α, θ)V + Bk (α, θ)W )e−π|W |
2
dW

=

∫
RM

h
(

Ak (α, θ)V +
(

IM − Ak (α, θ)Ak (α, θ)T
)1/2

W
)

e−π|W |
2
dW

Ornstein-Uhlenbeck operator with matrix valued times

F. Bonetto bonetto@math.gatech.edu The Kac model and (Non-)Equilibrium Statistical Mechanics. 35 / 1



Nelson’s hypercontractive estimate

Call
(Nah)(v) =

∫
R

h(av + (1− a2)1/2w)e−πw2
dw

where
a2 = e−t ≤ 1

Theorem

Assume that h : R→ R+ has finite entropy, i.e.,

S(h) =

∫
R

h(v) log h(v)e−πv2
dv <∞

then

S(Nah) ≤ a2S(h) + (1− a2)‖h‖1 log ‖h‖1
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Matrix valued time.

Write Ak (α, θ) as (SVD):

Ak (α, θ) = Uk (α, θ)Γk (α, θ)Vk (α, θ)T

where

Γk (α, θ) = diag (γ1, · · · , γM ) , 0 ≤ γj ≤ 1

and Uk (α, θ), Vk (α, θ) are unitary.

Theorem

Let h ∈ L1(RM , e−π|V |
2
dV ) and assume that S(h) <∞. Then

S(NAk (α,θ)h) ≤
∑

σ⊂{1,...,M}

Πi∈σcγ2
i Πj∈σ(1− γ2

j )S(hσUk (α,θ))

where the σ marginal hσU is given by

hσU(Z ) =

∫
Rσ

h(U(Z ′,Z ))e−π|Z |
2
dZ ′
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Collecting everything we get

S(Qk h) ≤
∑

α1,...,αk

λk
∫

dθ1

2π
· · · dθk

2π∑
σ⊂{1,...,M}

Πi∈σcγk,i (α, θ)2Πj∈σ(1− γk,j (α, θ)2)

∫
RM

h(V ) log hσUk (α,θ)(Pσc Uk (α, θ)T V )e−π|V |
2
dV .

while we need
S(Qk h) ≤ Ck,MS(h) .

We will use the Brascamp-Lieb Inequality.
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Brascamp-Lieb Inequality: warm up

A simple case is:

Lemma

Let h(V ) be such that ∫
RM

h(V )e−π|V |
2
dV = 1

and let its marginal over the j-th variable be denoted by

hj (V j ) =

∫
h(V )e−π|Vj |2 dVj ,

where V j = (V1, ...,Vj−1,Vj+1, ...,VN). Then we have

N∑
j=1

∫
h log hj e−π|V |

2
dV ≤ (N − 1)

∫
h log h e−π|V |

2
dV .

The Lemma easily follows from the Loomis-Whitney inequality∫
RM

F1(V 1) · · ·FM (V M )dV ≤ ‖F1‖LM−1 · · · ‖FM‖LM−1

where Fi ∈ LM−1(RM−1).
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Brascamp-Lieb Inequality

Theorem

For i = 1, . . .K , let

1 Hi ⊂ RM be subspaces of dimension di ;
2 Bi : RM → Hi linear maps such that BiBT

i = IHi .
3 fi : Hi → R non nengative functions.
4 ci non negative constants such that

K∑
i=1

ciBT
i Bi = IM .

then for any non-negative function h ∈ L1(RM , e−π|V |
2
dV ) with ‖h‖1 = 1 we get∫

RM
h(V ) log h(V )e−π|V |

2
dV ≥

≥
K∑

i=1

ci

∫
RM

[
h(V ) log fi (BiV )e−π|V |

2
dV − log

∫
Hi

fi (u)e−πu2
du

]
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Applying Brascamp-Lieb

Let:

fi (u)←→ hσU(V )

Hi ←→ Rσ
c

Bi ←→ Pσc Uk (α, θ)T

ci ←→
λk

Ck,M

k∏
l=1

dθl

2π

∏
i∈σc

γk,i (α, θ)2
∏
j∈σ

(1− γk,j (α, θ)2)

and assume that∑
α1,...,αk

λk
∫ k∏

l=1

dθl

2π

∑
σ⊂{1,...,M}

∏
i∈σc

γk,i (α, θ)2
∏
j∈σ

(1− γk,j (α, θ)2) ×

Uk (α, θ)PT
σc Pσc Uk (α, θ)T = Ck,M IM .

where

Ck,M =

[
M

N + M
+

N
N + M

(
1− µ(ρ)

N + M
N + M − 1

)k
]

then the Brascamp-Lieb inequality delivers exactly what we need.
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Summation Formula

Since
Uk (α, θ)PT

σc Pσc Uk (α, θ)T = IM

summing over σ, we get that we need to show

∑
α1,...,αk

λk
∫ k∏

l=1

dθl

2π
Ak (α, θ)T Ak (α, θ) = Ck,M IM .

Remember

Ok (α, θ) =

 k∏
j=1

rαj (θj )

−1

=

[
Ak (α, θ) Bk (α, θ)
Ck (α, θ) Dk (α, θ)

]
thus

Ak (α, θ)T Ak (α, θ) = Ok (α, θ)T J Ok (α, θ)
∣∣∣
M×M

J =

(
IM 0
0 0

)
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Let

J(m) =

(
m1IM 0

0 m2IN

)

we get ∑
α

λ

∫
dθ
2π

rα(θ) J(m) rα(θ)−1 = J(m′)

where

m′ = Pm P = I2 +
µ(ρ)

N + M − 1

(
N −N
−M M

)

so that ∑
α1,...,αk

λk
∫ k∏

l=1

ρ(θl )dθl Ak (α, θ)T Ak (α, θ) =

(
Pk
(

1
0

))
1

IM

That is exactly what we needed.
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Thank You.
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